Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling.
نویسندگان
چکیده
The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER- cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes.
منابع مشابه
Blockade of the Hedgehog pathway downregulates estrogen receptor alpha signaling in breast cancer cells
Anti-estrogen treatment, exemplified by tamoxifen, is a well-established adjuvant therapy for estrogen receptor alpha (ERα)-positive breast cancer. However, the effectiveness of this drug is limited due to the development of resistance. The Hedgehog (HH) signaling pathway is critical in embryonic development, and aberrant activation of this transduction cascade is linked to various malignancies...
متن کاملHedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway.
Endocrine resistance is a major challenge in the management of estrogen receptor (ER)-positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of patients developing resistance to endocrine therapy warrants additional studies. Here we show that noncanonical Hedgehog (Hh) signaling is an alternative growth promoting mechanism that...
متن کاملCombination of Cyclopamine and Tamoxifen Promotes Survival and Migration of MCF-7 Breast Cancer Cells – Interaction of Hedgehog-Gli and Estrogen Receptor Signaling Pathways
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathwa...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular sciences
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2016